|
深度学习的loss一般收敛到多少? - 知乎
看题主的意思,应该是想问,如果用训练过程当中的loss值作为衡量深度学习模型性能的指标的话,当这个指标下降到多少时才能说明模型达到了一个较好的性能,也就是将loss作为一个evaluation metrics。 但是就像知乎er们经常说的黑话一样,先问是不是,再问是什么。所以这个问题有一个前提,就是 ...
深度学习中loss和accuracy的关系? - 知乎
loss 的具体形式取决于机器学习任务的类型。 例如,在回归问题中,常用的 loss 函数包括平方损失、绝对损失和对数损失;在分类问题中,常用的 loss 函数包括交叉熵损失和 Hinge 损失。
有哪些「魔改」loss函数,曾经拯救了你的深度学习模型? - 知乎
类似的Loss函数还有IoU Loss。 如果说DiceLoss是一种 区域面积匹配度 去监督网络学习目标的话,那么我们也可以使用 边界匹配度去监督网络的Boundary Loss。 我们只对边界上的像素进行评估,和GT的边界吻合则为0,不吻合的点,根据其距离边界的距离评估它的Loss。
深度学习中LOSS的设计思路是什么? - 知乎
8本电子书免费送给大家,见文末。 常见的 Loss 有很多,比如平方差损失,交叉熵损失等等,而如果想有更好的效果,常常需要进行loss function的设计和改造,而这个过程也是机器学习中的精髓,好的损失函数既可以反映模型的训练误差,也可以反映模型的泛化误差,可参考以下几种思路: 首先就是 ...
究竟什么是损失函数 loss function? - 知乎
如何设计loss函数? Loss函数和你任务的评价准则越相关,二者越接近越好。 如果你任务的评价准则是F1-score(不可导),但一直在使用CrossEntropy Loss来迭代模型,二者之间虽然相关性很高但仍存在非线性。 如何在Pytorch中使用loss函数?
深度学习的多个loss如何平衡? - 知乎
多个loss引入pareto优化理论,基本都可以涨点的。 例子: Multi-Task Learning as Multi-Objective Optimization 可以写一个通用的class用来优化一个多loss的损失函数,套进任何方法里都基本会涨点。反正我们在自己的研究中直接用是可以涨的。
强化学习中actor_loss和critic_loss收敛问题? - 知乎
在正常的训练过程中,actor_loss和critic_loss的减小趋势表明模型在不断学习和优化。 若在训练过程中发现actor_loss持续增大,这可能意味着Actor未能有效学习到优化策略,或者Critic的反馈不够准确,导致Actor的更新方向出现偏差。
求通俗易懂解释下nce loss? - 知乎
Tensorflow实现了两种常用与word2vec的loss,sampled softmax和NCE,这两种loss本身可以用于任意分类问题。 之前一直不太懂这两种方法,感觉高深莫测,正好最近搞懂了,借tensorflow的代码和大家一起分享一下我的理解,也记录一下思路。
如何分析kaiming新提出的dispersive loss,对扩散模型和aigc会带来什么影响? - 知乎
Dispersive Loss 的目的: 是最大化表示的 分散性。 当不进行 \ell_2 归一化时,特征向量的 范数(长度) 是被允许自由变化的。 如果模型为了最小化 Dispersive Loss,它会倾向于让特征向量的范数变得非常大。
GAN生成对抗网络D_loss和G_loss到底应该怎样变化? - 知乎
做 GAN 有一段时间了,可以回答下这个问题。 G是你的任务核心,最后推理用的也是G,所以G的LOSS是要下降收敛接近0的,G的目标是要欺骗到D。 而成功的训练中,由于要达到G欺骗D的目的,所以D的Loss是不会收敛的,在G欺骗D的情况下,D的LOSS会在0.5左右。
|